Boosting the Performance of Pt/C Catalysts via Nitrogen‐Doped Carbon Support: Insights from Structural and Electrochemical Characterization
Научная публикация
| Журнал |
Small
ISSN: 1613-6810
, E-ISSN: 1613-6829
|
| Вых. Данные |
Год: 2025,
Том: 21,
Номер: 51,
Номер статьи
: e10144,
Страниц
: 13
DOI:
10.1002/smll.202510144
|
| Ключевые слова |
DFT, electrocatalysts, N-doped carbon supports, oxygen reduction reaction (ORR), platinum nanoparticles |
| Авторы |
Bayan Yulia A.
1
,
Beskopylny Egor R.
1
,
Gerasimov Evgeny U.
2
,
Aydakov Egor E.
2
,
Volik Kirill K.
3
,
Pankov Ilya V.
4
,
Chepkasov Ilya V.
5,6
,
Lukanov Michael M.
5
,
Kvashnin Alexander G.
5
,
Alekseenko Anastasia A.
1
|
| Организации |
| 1 |
Southern Federal University, Faculty of Chemistry, 7 Zorge St., Rostov-on-Don, 344090 Russia
|
| 2 |
Department of Catalysis Research, Boreskov Institute of Catalysis, Prospect Ac. Lavrentieva 5, Novosibirsk, 630090 Russia
|
| 3 |
Southern Federal University, The Smart Materials Research Institute, 178/24 Andrey Sladkova St., Rostov-on-Don, 344090 Russia
|
| 4 |
Southern Federal University, Research Institute of Physical Organic Chemistry, 194/2 St., Rostov-on-Don, 344090 Russia
|
| 5 |
Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205 Russia
|
| 6 |
Katanov Khakas State University, 90 Lenin pr., Abakan, 655017 Russia
|
|
Информация о финансировании (2)
|
1
|
Российский научный фонд
|
24-79-10162 (124101000296-8)
|
|
2
|
Министерство науки и высшего образования Российской Федерации (с 15 мая 2018)
|
Приоритет 2030
|
Nitrogen-doped carbon supports enhance platinum electrocatalysts for proton exchange membrane fuel cells (PEMFCs). This study demonstrates a rapid melamine-assisted N-doping method for conductive carbon black (Ketjenblack EC600JD), producing a high-loading (≈40 wt.% Pt) catalyst with exceptional activity and durability. X-ray photoelectron spectroscopy confirms successful N-incorporation. Microscopy reveals uniform Pt nanoparticles (2.5–3 nm) and atomic Pt clusters on the N-doped support, attributed to strong Pt–N interactions. Density functional theory (DFT) calculations highlight the critical role of pyridinic-N defects in stabilizing atomic Pt, enhancing activity via charge transfer, and improving stability via strong Pt anchoring. Electrochemically, Pt/KB-600-N achieves twice the mass activity of commercial HiSPEC4000. After accelerated stress testing, it shows only a 15% electrochemical surface area (ESA) loss versus 35% for undoped Pt/KB-600. Enhanced stability correlates with pyridinic/graphitic N species mitigating carbon corrosion and Pt detachment. Binding energy analysis and cluster models quantify the Pt-support interaction, revealing N-doping increases Pt adhesion energy by 20–30% compared to pristine carbon. This work establishes a rational design strategy for high-performance Pt-based electrocatalysts by leveraging nitrogen-doped carbon supports, offering fundamental insights into the critical role of Pt–N interactions in enhancing both activity and durability for PEMFC applications.