Sciact
  • EN
  • RU

Boosting the Performance of Pt/C Catalysts via Nitrogen‐Doped Carbon Support: Insights from Structural and Electrochemical Characterization Full article

Journal Small
ISSN: 1613-6810 , E-ISSN: 1613-6829
Output data Year: 2025, Article number : e10144, Pages count : 13 DOI: 10.1002/smll.202510144
Tags DFT, electrocatalysts, N-doped carbon supports, oxygen reduction reaction (ORR), platinum nanoparticles
Authors Bayan Yulia A. 1 , Beskopylny Egor R. 1 , Gerasimov Evgeny U. 2 , Aydakov Egor E. 2 , Volik Kirill K. 3 , Pankov Ilya V. 4 , Chepkasov Ilya V. 5,6 , Lukanov Michael M. 5 , Kvashnin Alexander G. 5 , Alekseenko Anastasia A. 1
Affiliations
1 Southern Federal University, Faculty of Chemistry, 7 Zorge St., Rostov-on-Don, 344090 Russia
2 Department of Catalysis Research, Boreskov Institute of Catalysis, Prospect Ac. Lavrentieva 5, Novosibirsk, 630090 Russia
3 Southern Federal University, The Smart Materials Research Institute, 178/24 Andrey Sladkova St., Rostov-on-Don, 344090 Russia
4 Southern Federal University, Research Institute of Physical Organic Chemistry, 194/2 St., Rostov-on-Don, 344090 Russia
5 Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205 Russia
6 Katanov Khakas State University, 90 Lenin pr., Abakan, 655017 Russia

Funding (2)

1 Russian Science Foundation 24-79-10162 (124101000296-8)
2 Ministry of Science and Higher Education of the Russian Federation Приоритет 2030

Abstract: Nitrogen-doped carbon supports enhance platinum electrocatalysts for proton exchange membrane fuel cells (PEMFCs). This study demonstrates a rapid melamine-assisted N-doping method for conductive carbon black (Ketjenblack EC600JD), producing a high-loading (≈40 wt.% Pt) catalyst with exceptional activity and durability. X-ray photoelectron spectroscopy confirms successful N-incorporation. Microscopy reveals uniform Pt nanoparticles (2.5–3 nm) and atomic Pt clusters on the N-doped support, attributed to strong Pt–N interactions. Density functional theory (DFT) calculations highlight the critical role of pyridinic-N defects in stabilizing atomic Pt, enhancing activity via charge transfer, and improving stability via strong Pt anchoring. Electrochemically, Pt/KB-600-N achieves twice the mass activity of commercial HiSPEC4000. After accelerated stress testing, it shows only a 15% electrochemical surface area (ESA) loss versus 35% for undoped Pt/KB-600. Enhanced stability correlates with pyridinic/graphitic N species mitigating carbon corrosion and Pt detachment. Binding energy analysis and cluster models quantify the Pt-support interaction, revealing N-doping increases Pt adhesion energy by 20–30% compared to pristine carbon. This work establishes a rational design strategy for high-performance Pt-based electrocatalysts by leveraging nitrogen-doped carbon supports, offering fundamental insights into the critical role of Pt–N interactions in enhancing both activity and durability for PEMFC applications.
Cite: Bayan Y.A. , Beskopylny E.R. , Gerasimov E.U. , Aydakov E.E. , Volik K.K. , Pankov I.V. , Chepkasov I.V. , Lukanov M.M. , Kvashnin A.G. , Alekseenko A.A.
Boosting the Performance of Pt/C Catalysts via Nitrogen‐Doped Carbon Support: Insights from Structural and Electrochemical Characterization
Small. 2025. e10144 :1-13. DOI: 10.1002/smll.202510144 WOS Scopus OpenAlex
Dates:
Published online: Nov 6, 2025
Identifiers:
Web of science: WOS:001608626900001
Scopus: 2-s2.0-105021540229
OpenAlex: W4415956335
Citing: Пока нет цитирований
Altmetrics: