Structured Nanocomposite Catalysts of Biofuels Transformation into Syngas and Hydrogen: Design and Performance Научная публикация
Журнал |
International Journal of Hydrogen Energy
ISSN: 0360-3199 , E-ISSN: 1879-3487 |
||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2015, Том: 40, Страницы: 7511-7522 Страниц : 12 DOI: 10.1016/j.ijhydene.2014.11.151 | ||||||||||||
Ключевые слова | Biofuels reforming, Catalytic performance, Coking stability, Hydrogen and syngas, Microchannel and foam substrates, Nanocomposite active components | ||||||||||||
Авторы |
|
||||||||||||
Организации |
|
Информация о финансировании (4)
1 | Российский фонд фундаментальных исследований | 12-03-93115 |
2 | European Commission | 228953 FP7-NMP-2008-LARGE-2 OCMOL |
3 | European Commission | 604296 FP7-NMP-2013-LARGE-7 BIOGO |
4 | Министерство образования и науки Российской Федерации |
Реферат:
Main features of structured catalysts performance in bio-fuels reforming into syngas at lab-scale and pilot-scale levels using specially designed reactors and kinetic installations allowing to broadly tune the operational parameters are presented. Effects of the nature of nanocomposite active component comprised of RuþNi nanoparticles on bulk/aluminasupported perovskite or MneCreO spinel, type of substrate (Ni-Al alloy and SiC(Al2O3)/Al-Si-O foam substrates, Fechraloy microchannel plates or gauzes protected by thin corundum layer), type of fuel (natural gas, ethanol, acetone, ethyl acetate glycerol), feed composition and temperature on yield of syngas/byproducts and performance stability are considered. The best performance in real feeds with syngas yield approaching equilibrium
at short contact times without any heat/mass transfer effects along with a high thermochemical stability were demonstrated for catalyst on heat-conducting microchannel substrate. Oxygen addition to the feed in optimized amounts allows to suppress coking and stabilize performance even for the case of such reactive fuel as glycerol only slightly affecting syngas yield.
Библиографическая ссылка:
Sadykov V.
, Mezentseva N.
, Simonov M.
, Smal E.
, Arapova M.
, Pavlova S.
, Fedorova Y.
, Chub O.
, Bobrova L.
, Kuzmin V.
, Ishchenko A.
, Krieger T.
, Roger A.-C.
, Parkhomenko K.
, Mirodatos C.
, Smorygo O.
, Ross J.
Structured Nanocomposite Catalysts of Biofuels Transformation into Syngas and Hydrogen: Design and Performance
International Journal of Hydrogen Energy. 2015. V.40. P.7511-7522. DOI: 10.1016/j.ijhydene.2014.11.151 WOS Scopus РИНЦ CAPlusCA OpenAlex
Structured Nanocomposite Catalysts of Biofuels Transformation into Syngas and Hydrogen: Design and Performance
International Journal of Hydrogen Energy. 2015. V.40. P.7511-7522. DOI: 10.1016/j.ijhydene.2014.11.151 WOS Scopus РИНЦ CAPlusCA OpenAlex
Даты:
Поступила в редакцию: | 30 авг. 2014 г. |
Принята к публикации: | 20 нояб. 2014 г. |
Опубликована online: | 19 янв. 2015 г. |
Опубликована в печати: | 1 июн. 2015 г. |
Идентификаторы БД:
Web of science: | WOS:000356549000012 |
Scopus: | 2-s2.0-84930378540 |
РИНЦ: | 24042664 |
Chemical Abstracts: | 2015:100735 |
Chemical Abstracts (print): | 162:631040 |
OpenAlex: | W2070559431 |