Combining Atomic Layer Deposition with Surface Organometallic Chemistry to Enhance Atomic-Scale Interactions and Improve the Activity and Selectivity of Cu–Zn/SiO2 Catalysts for the Hydrogenation of CO2 to Methanol Full article
Journal |
JACS Au
ISSN: 2691-3704 |
||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2023, Volume: 3, Number: 9, Pages: 2536–2549 Pages count : 14 DOI: 10.1021/jacsau.3c00319 | ||||||||||||||
Tags | ALD; CO2 hydrogenation; CuZn alloy; dealloying; operando DRIFTS; SOMC | ||||||||||||||
Authors |
|
||||||||||||||
Affiliations |
|
Funding (6)
1 | European Commission | 800419 H2020-MSCA-IF-2017 |
2 | Swiss Federal Institute of Technology in Zurich | ETH-4017-2 |
3 | Ministry of Science and Higher Education of the Russian Federation | ГЗ-2021-2023 |
4 | Swiss National Science Foundation | 200021_169134 |
5 | Swiss National Science Foundation | 200020B_192050 |
6 | Swiss National Science Foundation | CRSII5-183495 |
Abstract:
The direct synthesis of methanol via the hydrogenation of CO2, if performed efficiently and selectively, is potentially a powerful technology for CO2 mitigation. Here, we develop an active and selective Cu–Zn/SiO2 catalyst for the hydrogenation of CO2 by introducing copper and zinc onto dehydroxylated silica via surface organometallic chemistry and atomic layer deposition, respectively. At 230 °C and 25 bar, the optimized catalyst shows an intrinsic methanol formation rate of 4.3 g h–1 gCu–1 and selectivity to methanol of 83%, with a space-time yield of 0.073 g h–1 gcat–1 at a contact time of 0.06 s g mL–1. X-ray absorption spectroscopy at the Cu and Zn K-edges and X-ray photoelectron spectroscopy studies reveal that the CuZn alloy displays reactive metal support interactions; that is, it is stable under H2 atmosphere and unstable under conditions of CO2 hydrogenation, indicating that the dealloyed structure contains the sites promoting methanol synthesis. While solid-state nuclear magnetic resonance studies identify methoxy species as the main stable surface adsorbate, transient operando diffuse reflectance infrared Fourier transform spectroscopy indicates that μ-HCOO*(ZnOx) species that form on the Cu–Zn/SiO2 catalyst are hydrogenated to methanol faster than the μ-HCOO*(Cu) species that are found in the Zn-free Cu/SiO2 catalyst, supporting the role of Zn in providing a higher activity in the Cu–Zn system.
Cite:
Zhou H.
, Docherty S.R.
, Phongprueksathat N.
, Chen Z.
, Bukhtiyarov A.V.
, Prosvirin I.P.
, Safonova O.V.
, Urakawa A.
, Copéret C.
, Müller C.R.
, Fedorov A.
Combining Atomic Layer Deposition with Surface Organometallic Chemistry to Enhance Atomic-Scale Interactions and Improve the Activity and Selectivity of Cu–Zn/SiO2 Catalysts for the Hydrogenation of CO2 to Methanol
JACS Au. 2023. V.3. N9. P.2536–2549. DOI: 10.1021/jacsau.3c00319 WOS Scopus РИНЦ ANCAN PMID OpenAlex publication_identifier_short.sciact_skif_identifier_type
Combining Atomic Layer Deposition with Surface Organometallic Chemistry to Enhance Atomic-Scale Interactions and Improve the Activity and Selectivity of Cu–Zn/SiO2 Catalysts for the Hydrogenation of CO2 to Methanol
JACS Au. 2023. V.3. N9. P.2536–2549. DOI: 10.1021/jacsau.3c00319 WOS Scopus РИНЦ ANCAN PMID OpenAlex publication_identifier_short.sciact_skif_identifier_type
Dates:
Submitted: | Jun 18, 2023 |
Accepted: | Aug 9, 2023 |
Published online: | Aug 23, 2023 |
Published print: | Sep 25, 2023 |
Identifiers:
Web of science: | WOS:001079748400001 |
Scopus: | 2-s2.0-85170418523 |
Elibrary: | 54975424 |
Chemical Abstracts: | 2023:1739632 |
Chemical Abstracts (print): | 184:74340 |
PMID: | 37772188 |
OpenAlex: | W4386090888 |
publication_identifier.sciact_skif_identifier_type: | 989 |