Sciact
  • EN
  • RU

Machine Learning-Based Predicting of the Equilibrium Cation Distribution in Faujasite-Type Zeolites Научная публикация

Журнал Materials Chemistry and Physics
ISSN: 0254-0584 , E-ISSN: 1879-3312
Вых. Данные Год: 2026, Том: 349, Номер: Part 2, Номер статьи : 131853, Страниц : 11 DOI: 10.1016/j.matchemphys.2025.131853
Ключевые слова Zeolites; FAU; Cation distribution; Database; Replica-exchange Monte Carlo; Force field
Авторы Grenev Ivan V. 1,2 , Bobkov Matvey E. 1,2 , Ivanov Anton D. 1,2 , Uliankina Anastasiia I. 1,3 , Shubin Aleksandr A. 1,4
Организации
1 Boreskov Institute of Catalysis, Ac. Lavrentiev av. 5, Novosibirsk, 630090, Russia
2 Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
3 Omsk State Technical University, Mira str. 11, Omsk, 644050, Russia
4 Institute of Solid State Chemistry and Mechanochemistry, Kutateladze str. 18, 630090 Novosibirsk, Russia

Информация о финансировании (1)

1 Российский научный фонд 24-71-10096

Реферат: A surrogate predictive model for estimating the cationic site occupancy in faujasite-type (FAU) zeolites based on their chemical composition is presented. First, a reference experimental database containing structural data for 108 dehydrated FAU zeolites was compiled from literature sources. A quantitative criterion was introduced to assess the applicability of models predicting cationic site occupancy in reference zeolite frameworks. The canonical replica-exchange Monte Carlo method was used to generate a training data set. The best agreement between the simulated and experimental cationic site occupancies was achieved using a custom zeolite framework model with randomly distributed Al atoms and an extended DFT/CC-derived force field model. A set of descriptors was developed to translate the chemical composition of zeolite adsorbents into numerical parameters for modeling. The machine-learning surrogate model was trained on a simulation-derived database containing cation site occupancies for 250 monocationic and 3962 bicationic FAU zeolites generated using replica-exchange Monte Carlo simulations. Since surrogate predictive models are not limited by a set of force field parameters, they can be used to predict the cationic site occupancies in zeolites for a wide range of cations. The predictive ability of the surrogate model was demonstrated for a set of FAU zeolite frameworks from the reference database.
Библиографическая ссылка: Grenev I.V. , Bobkov M.E. , Ivanov A.D. , Uliankina A.I. , Shubin A.A.
Machine Learning-Based Predicting of the Equilibrium Cation Distribution in Faujasite-Type Zeolites
Materials Chemistry and Physics. 2026. V.349. NPart 2. 131853 :1-11. DOI: 10.1016/j.matchemphys.2025.131853
Даты:
Поступила в редакцию: 5 авг. 2025 г.
Принята к публикации: 26 нояб. 2025 г.
Опубликована online: 29 нояб. 2025 г.
Опубликована в печати: 1 февр. 2026 г.
Идентификаторы БД: Нет идентификаторов
Цитирование в БД: Пока нет цитирований
Альметрики: